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Abstract. 

Evapotranspiration is the dominant pathway by which water returns from land surfaces and vegetation to the atmosphere in 

many semiarid and subhumid regions. In this study, we integrated satellite-based estimates of evapotranspiration with climate, 

runoff, and woody-vegetation data to evaluate how changes in precipitation, temperature, and canopy cover jointly influence 

water loss in a temperate savanna that spans both semiarid and subhumid climates. Our validation at the sub-basin scale showed 10 

that modeled evapotranspiration agreed moderately well with water-balance estimates (coefficient of determination ≈ 0.65, 

bias −7 millimeters per water year, and root mean square error 103 millimeters per water year). Across the region, annual 

evapotranspiration totals generally reached about 90 percent of precipitation, indicating an ecosystem strongly driven by 

atmospheric water demand. In dry years, water loss occasionally exceeded rainfall, highlighting a heightened sensitivity to soil 

moisture shortages and extreme heat. Areas with high woody-canopy cover consistently exhibited higher evapotranspiration 15 

and lower net water surplus. Notably, where canopy cover exceeded 80 percent in the driest portions of the study area, the soil 

water surplus turned negative over multiple years. These findings underscore the potential for expanding woody cover to limit 

groundwater recharge and reduce overall water availability, especially under warming and more variable precipitation regimes. 

Future work could explore fine-scale, long-term impacts of woody plant density and targeted management strategies that 

optimize trade-offs among vegetation growth, ecosystem health, and water resources. 20 

1 Introduction 

Evapotranspiration (ET) is the principal flux returning water from the Earth’s surface to the atmosphere, with estimates 

suggesting that 62,000–75,000 km³ of water cycles back annually (Abbott et al., 2019). This process accounts for more than 

60% of global precipitation (Oki & Kanae, 2006). Because the difference between precipitation (P) and ET is commonly used 

to evaluate water availability at catchment and basin scales (Falkenmark et al., 1989), accurately quantifying ET and 25 

identifying its key drivers are critical for effective water resource management and ecosystem protection. 

 Climatic factors—temperature (T) and precipitation—are typically regarded as the main drivers of ET (Dai et al., 

2018). Rising temperatures have increased atmospheric moisture demand worldwide, manifesting as upward trends in potential 

evapotranspiration (PET)—the theoretical maximum ET assuming no water limitation (Feng & Fu, 2013; Fu et al., 2016; 

https://doi.org/10.5194/egusphere-2025-1594
Preprint. Discussion started: 24 April 2025
c© Author(s) 2025. CC BY 4.0 License.



2 

 

Scheff & Frierson; Zhao & Dai, 2015; Zhao & Dai, 2016). Unlike PET, which ignores water constraints, measured ET is 30 

closely coupled with P, generally displaying a positive correlation (Stocker et al., 2013). However, the strength of this coupling 

varies across regions, climates, and timescales. In contrast, T and ET exhibit a weaker relationship overall. Although they are 

more strongly correlated in humid areas, they may decouple and even show negative correlation under arid conditions during 

extreme heat events (Yuan et al., 2020; Alessi et al., 2022; Qiu et al., 2020; Berg & Sheffield, 2018). 

 In addition to climatic factors, ecosystem structure—particularly changes in woody vegetation—can significantly 35 

alter ET rates. Numerous studies in the United States document how woody plant encroachment (WPE), defined as the 

expansion of native trees and shrubs into grass-dominated systems such as grasslands and open-canopy savannas (Acharya et 

al., 2018), modifies ET. In Texas, Dugas et al. (1998) and Afinowicz et al. (2005) observed ET decreases of 31.9 mm and 110 

mm, respectively, following the removal of Juniperus ashei. Dugas et al. (1998) further noted that these decreases persisted 

only for two years, after which the effect diminished. By contrast, in Oklahoma, Wang et al. (2018) reported a 45% increase 40 

in mean annual ET in a former grassland region after its conversion to Juniperus spp.–dominated woodlands; and Qiao et al. 

(2015) showed that average ET rates in Juniperus virginiana woodlands were 100 mm/yr higher than those in neighboring 

grasslands. Similar patterns appear farther west, in a riparian area in Arizona, where Prosopis velutina woodlands exhibited 

an ET rate of 692 mm/yr, compared with 548 mm/yr for an adjacent grassland (Scott et al., 2014). 

 The Post Oak Savannah ecoregion of east-central Texas presents a particularly compelling set of conditions for a case 45 

study examining how climate and woody vegetation jointly influence ET. Over the past 150 years, anthropogenic reshaping 

of this landscape has resulted in a mosaic of grasslands, savannas, and densely wooded thickets (Campbell, 1925; Tharp, 1926; 

McBride, 1933; Parmalee, 1955; Garza & Blackburn, 1985; Midwood et al., 1998; Singhurst et al., 2004; Griffith et al., 2007; 

Stambaugh et al., 2011). Recent remote sensing studies by Olariu et al. (2024) revealed that between 1996 and 2022, ca. 9.7% 

(5,338 km²) of the Post Oak Savannah underwent WPE, converting grassland and open-canopy savanna into woodland, while 50 

another ca. 6.8% (4,504 km²) experienced “thicketization,” marked by proliferating sub-canopy woody plants in established 

woodlands. At the same time, some 5.7% showed the opposite trend, transitioning from woodlands to more open savanna or 

grasslands. Superimposed on these rapid land-cover changes are pronounced east–west gradients in precipitation (850–1250 

mm/yr) and temperature (18–22°C), with drier, hotter conditions in the southwest and cooler, wetter conditions in the northeast 

(Schmidly, 2002). These dynamic biophysical conditions underscore the importance of studying how changing vegetation 55 

structure and climate interact to shape ET across this region. 

 Shifts in ecology and biodiversity associated with thicketization in oak savanna systems have been thoroughly 

examined (Brudvig & Mabry, 2008; Brudvig & Evans, 2006; Zirbel et al., 2017). However, the hydrological implications of 

WPE in these water-limited ecosystems remain comparatively understudied. Because ET is generally the dominant component 

of the water budget (Condon et al., 2020; Reitz et al., 2017; Seager et al., 2018), an increase in woody cover could substantially 60 

alter water cycling. Indeed, a recent study in the Post Oak Savannah by Basant et al. (2023) found that thicketization markedly 

reduced deep drainage and, in some cases, halted groundwater recharge altogether. Meanwhile, woodlands that had not 

undergone thicketization still experienced recharge, but at much lower rates than non-thicketized areas. Although these 
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findings strongly suggest that ET increases in response to woody plant proliferation, this hypothesis remains unquantified—

creating a clear knowledge gap regarding how WPE affects water resources in oak savanna ecosystems. 65 

 To address this knowledge gap, the present study integrates remote sensing and hydrological modelling approaches 

to characterize ET dynamics across the Post Oak Savannah between 2008 and 2023. We employ MOD16A2GF C6.1, hereafter 

referred to as MOD16—the gap-filled, eight-day net ET dataset—along with water-balance estimates to validate and refine 

ET measurements at multiple temporal scales. By combining these satellite-derived products with spatially explicit woody 

plant metrics and climate data, we aim to determine how variations in vegetation structure and environmental conditions 70 

influence ET. Accordingly, this study pursues four primary objectives: (1) Validate MOD16 in the Post Oak Savannah by 

comparing satellite-derived ET data against water-balance estimates, thereby establishing the accuracy of MOD16 for regional-

scale analyses; (2) Examine monthly and seasonal variations in ET, gaining insight into short-term and interannual changes; 

(3) Analyze the relationship between woody plant metrics (canopy cover and canopy height), climatic factors (precipitation 

and temperature), and ET at the water-year scale to quantify how shifts in vegetation composition and climatic drivers affect 75 

ET rates, and (4) Evaluate evapotranspiration–precipitation ratios (ET/P) and calculate excess water (precipitation minus 

evapotranspiration, P – ET) across the region at the water-year scale to provide a broader assessment of water availability 

under varying woody cover and climatic conditions. By integrating a robust remote sensing framework with field-based 

validation and detailed ecological data, this study aims to enhance our understanding of how climate and WPE jointly influence 

water cycling in the Post Oak Savannah. 80 

2 Materials and Methods 

2.1 Study Site 

The Post Oak Savannah ecoregion in east-central Texas covers over 55,000 km² and spans 31 counties, with its western 

boundary encompassing much of the Carrizo–Wilcox Aquifer (Fig. 1A). Historically, this region supported an open-canopy 

savanna characterized by diverse grasses and forbs interspersed with stands of post oak (Quercus stellata) and blackjack oak 85 

(Quercus marilandica) (Wasowski & Wasowski, 1988). Positioned between the East Texas Piney Woods—dominated by 

dense evergreen forests—and the Central Texas Blackland Prairie—characterized by black, calcareous, alkaline, clay-rich 

soils—this landscape functions as an ecological transition zone (Diggs et al., 1999; Schmidly, 2002). 

 During the study period (2008–2023), both precipitation and temperature displayed pronounced spatial variability, 

with annual precipitation ranging from approximately 1,400 mm in the northeastern portion of the ecoregion to about 600 mm 90 

in the southwest (Fig. 1B). Mean annual temperature exhibited a similar gradient, decreasing from roughly 22°C in the 

northeast to 17°C in the southwest (Fig. 1D). Canopy cover over this interval showed substantial fragmentation, with densely 

wooded stands interspersed among open, grass-dominated areas (Fig. 1E). In contrast, the southern portion exhibited a more 

continuous mosaic of cover types, with less abrupt transitions between wooded and non-wooded patches (Fig. 1E). 
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Figure 1. Overview of the Post Oak Savannah ecoregion in east-central Texas. The left side of Panel (A) shows the ecoregion’s location 

relative to the United States, Texas, and the Carrizo–Wilcox Aquifer; the right side provides a true-color Landsat 8 satellite mosaic of the 

Post Oak Savannah (2023). Panels (B) and (C) illustrate, respectively, mean annual precipitation (mm) and a classification of the four 

precipitation zones over the period 2008–2023. And panels (D) and (E) depict, respectively, temperature (°C) and canopy cover for the same 

timeframe. 100 

2.2 Data and Preprocessing 

2.2.1 Evapotranspiration Data 

In this study we used the MOD16 Collection 6.1 terrestrial ecosystem ET dataset, which is based on a modified Penman–

Monteith formulation (Mu et al., 2007; Mu et al., 2011). It provides 8-day cumulative ET estimates for the global land surface 

at a 500-m spatial resolution (units: mm/m2). This ET product has been widely employed in global ET modeling (Kim et al., 105 

2012; Ershadi et al., 2015; Ramoelo et al., 2014; Trambauer et al., 2014; Velpuri et al., 2013), showing variable performance 

upon validation but generally stronger accuracy in North America (Velpuri et al., 2013; Zhang et al., 2019). Developed using 

meteorological data from NASA’s Global Modeling and Assimilation Office (GMAO) and various MODIS-based inputs (e.g., 

LAI, FPAR, albedo) (Mu et al., 2011), Version 6.1 offers notable improvements in areas affected by clouds and/or aerosol 

contamination. Specifically, it employs a year-end gap-filling technique in which 8-day intervals lacking reliable FPAR/LAI 110 

data are replaced with the average of the best available FPAR/LAI for that vegetation pixel over the preceding five years. 

 A quality control workflow was implemented to exclude bad pixels from the analysis. Pixels produced solely by the 

MOD16 backup algorithm were masked and removed. Additionally, since MODIS employs its own confidence quality score 

https://doi.org/10.5194/egusphere-2025-1594
Preprint. Discussion started: 24 April 2025
c© Author(s) 2025. CC BY 4.0 License.



5 

 

assessment, only pixels with scores of 0 and 1—indicating good and usable data—were retained, while all others were 

discarded. Finally, we used the MCD12Q1.061 MODIS Land Cover Type Yearly Global 500-m Land Cover Type 1: Annual 115 

IGBP classification system to mask pixels classified as Water Bodies, Barren, Cropland, or Cropland/Natural Vegetation 

Mosaic. These were excluded from the analysis because of the lack of natural vegetation and the influence of artificial watering 

on the results. 

2.2.2 Temperature and Precipitation Data  

The temperature and precipitation products used in this study were obtained from the Daymet V4 model, developed by the 120 

Oak Ridge National Laboratory and supported by NASA through the Earth Science Data and Information System (Thornton 

et al., 2022). Daymet provides long-term, continuous, gridded estimates of daily climate variables at a 1-km resolution by 

interpolating and extrapolating ground-based observations via statistical modeling techniques. It has been widely utilized in 

ecological, hydrological, and agricultural studies (Akinsanola et al., 2024; Dey et al., 2024; Bhat et al., 2024; Zahura et al., 

2024; Bennemann et al., 2023). Because Daymet provides daily minimum and maximum temperatures, we calculated the 125 

simple mean for each day to derive the average daily temperature. 

2.2.3 Woody Plant Metric Data 

Two primary metrics were used to characterize woody vegetation in this study: canopy cover and canopy height. The canopy 

cover data originated from Version 3 of the Rangeland Analysis Platform (RAP), developed by the University of Montana in 

partnership with the U.S. Department of Agriculture (USDA). This dataset combines tree and shrub cover to capture the full 130 

spectrum of woody plants influencing ET (Allred et al., 2021). The RAP cover estimates integrate information from 75,000 

field plots and the historical Landsat record. Through cloud computing and temporal convolutional networks, annual 

predictions are generated at a 30-m resolution across the United States. Validation against approximately 7,500 field plots 

yielded mean absolute errors (MAE) of ±6.2% and ±2.6% for shrubs and trees, respectively, and root mean square errors 

(RMSE) of ±8.8% and ±6.7% for shrubs and trees, respectively. While RAP has primarily been applied in agricultural contexts 135 

(Hudson et al., 2021; Morford et al., 2022; Subhashree et al., 2023; Retallack et al., 2023), it also has demonstrated utility in 

ecological studies (Olariu et al., 2024). 

 Canopy height data were drawn from two sources: Potapov et al. (2021), which provides 2019 estimates, and 

Malambo and Popescu (2024), which supplies 2020 estimates. Potapov et al. (2021) produced a 30-m-canopy height model 

(CHM) by extrapolating canopy height measurements from Global Ecosystem Dynamics Investigation (GEDI) footprints to 140 

analysis-ready Landsat data, using a bagged regression tree ensemble method (Breiman, 2001). When validated against 

airborne lidar, the CHM displayed an RMSE of 9.07 m, an MAE of 6.36 m, and an R² of 0.61, performing particularly well 

for taller trees (≥10 m). This dataset has largely been employed to quantify stocking rates and biomass for ecological research 

(Ali & Rahman, 2025; Dröge et al., 2025; Potapov et al., 2022; Hawker et al., 2022). In contrast, Malambo and Popescu (2024) 

integrated ICESat-2 (Ice, Cloud, and Land Elevation Satellite-2) with ancillary Landsat, LANDFIRE, and topographic 145 
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variables to produce a 30-m-canopy-height product. Validation against airborne lidar (R² = 0.72, MAE = 3.9 m) revealed 

higher accuracy in densely forested environments—such as mangroves, coniferous forests, or mixed broadleaf forests—than 

in sparsely vegetated regions like deserts and chaparral. Although relatively new, this product has already been applied to 

hurricane-impact studies in mangrove ecosystems (Roy et al., 2024) and other remote sensing research (Guo et al., 2024; 

Guenther et al., 2024). 150 

2.2.4 Runoff Data 

The runoff data used for the water balance ET (WBET) calculations were obtained from USGS WaterWatch 

(http://waterwatch.usgs.gov), a platform that provides streamgage-based maps for over 3,000 long-term (30 years or more) 

USGS streamgages. Runoff was calculated at the water-year scale for each HUC8 subbasin by dividing the average daily flow 

for the water year by the drainage basin area, and it was assumed to be uniform across the entire basin. 155 

2.2.5 Stacking and Aggregation 

All projection, resampling, and aggregation for this study were performed on the Google Earth Engine (GEE) platform 

(Gorelick et al., 2021). To align the various datasets, each was projected to the EPSG:3857 (Spherical/Web Mercator) 

coordinate system, clipped to the Post Oak Savannah boundary (U.S. EPA Level 3 ecoregion), and resampled using the 500-

m MOD16 grid (Omernik & Griffith, 2014). 160 

To maintain consistency with the ET product, both canopy-cover and canopy-height datasets were resampled from 30 m to 

500 m via mean resampling, which preserved the continuous nature of the data (Blan & Butler, 1999). By contrast, Daymet 

data were resampled from 1-km to 500-m using the nearest-neighbor method to retain the original values (Brandsma & Können, 

2006). 

 Once aligned and resampled, the datasets were aggregated to monthly scales, water-year scales (October 1 to 165 

September 30), and overall averages for the entire study period. For instance, Water 2009 encompasses data from October 1, 

2008 through September 30, 2009. This water-year approach was chosen in lieu of the standard calendar year (January 1 to 

December 31) to better capture the lagged effects of the region’s precipitation patterns—rainier fall and spring seasons and 

drier summers—on vegetation and water balance (Null & Viers, 2013; He et al., 2021; Papacharalampous & Tyralis, 2020). 

Specifically, the 8-day, 500-m MOD16 ET product was aggregated to monthly (January 2008–December 2023) and water-170 

year (2009–2023) scales. Pixels that had been masked during any portion of a particular month or water year were given a null 

value and excluded from analysis. The daily, 500-m Daymet V4 precipitation dataset was aggregated to both monthly and 

water-year intervals, whereas temperature was aggregated only to the water-year scale. Precipitation data were further averaged 

across the entire study period and then grouped into 200-mm precipitation zones (600–800 mm, 801–1000 mm, 1001–1200 

mm, and ≥1201 mm) to assess the influence of varying aridity (Figure 4-1C). To align the annual canopy cover and canopy 175 

height metrics with the ET data, each year’s canopy values were matched to the corresponding water year’s ET (e.g., canopy 

cover for 2012 was compared with ET from Water Year 2012), ensuring that nine of the twelve months overlapped. Lastly, 
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the canopy cover dataset was also aggregated into an overall average spanning the study period for use in monthly analyses 

and the excess water analysis. 

 Finally, to enhance our understanding of water use and cycling in areas of increasing woody vegetation density, 180 

canopy cover was stratified into six classes: 0–10%, 11–20%, 21–40%, 41–60%, 61–80%, and ≥81%. These distinctions were 

informed by an extensive literature review encompassing a wide range of ecological and hydrological considerations. 

Numerous studies identify 10% canopy cover as the upper threshold for grasslands in temperate climates (Dixon et al., 2014; 

Plappert et al., 2024; Hu, 2024). By contrast, savanna systems typically exhibit between 10% and 60% canopy cover 

(Loewensteiner et al., 2021; Anchang et al., 2020), with higher percentages generally characterizing tropical savannas, where 185 

woodlands are denser than in temperate zones. Accordingly, the 10%–60% range was subdivided into three strata: 10%–20% 

cover, representing transitional grassland–open‐canopy savannas; 21%–40% cover, representing open‐canopy savannas; and 

41%–60% cover, representing savanna–woodland transition zones. The 41%–60% range is more prevalent in the northern Post 

Oak Savannah, where higher precipitation supports greater woody density. The highest cover categories (61%–80% cover and 

≥81%) were then designated as woodlands and thicketized woodlands, respectively. 190 

2.3 Major Steps 

Consistent with the four objectives of this study, we (1) validate the MOD16 ET product against water‐balance estimates 

(WBET) at the subbasin (HUC8) scale; (2) analyze monthly and seasonal ET differences as they relate to canopy cover; (3) 

use linear regression to examine the coupling and decoupling of woody plant metrics (canopy cover and canopy height), 

climatic factors (precipitation and temperature), and ET within different precipitation zones; and (4) evaluate excess water (P 195 

– ET) at the water‐year scale—including an ET/P analysis—to assess broader trends in water availability over the study period 

(Fig. 2). 
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Figure 2. Overview of the data processing and analysis workflow used in this study. The grey panel outlines how monthly and water-year 

ET from the MOD16 product is derived via quality control, cloud masking, and aggregation. The yellow panel (1) illustrates validation of 200 
the MODIS-based ET product by deriving water balance ET (WBET = P – R – ΔS) from precipitation (Daymet V4) and runoff (USGS 

WaterWatch) at the subbasin scale. The blue panel (2) shows the analysis of monthly and seasonal ET in relation to canopy cover from the 

Rangeland Analysis Platform and precipitation from Daymet V4. The green panel (3) shows the application of regression analyses on 

precipitation, temperature, canopy cover, and canopy height to assess how woody plant metrics and climate factors influence ET across 

different precipitation zones. And the pink panel (4) illustrates the evaluation of overall water availability by comparing ET with precipitation 205 
(ET/P) and calculating excess water (P – ET) at the water-year scale. 

2.3.1 MOD16 ET Validation 

At the water‐year scale, WBET for HUC8 subbasins was compared with MOD16 ET. The water‐year WBET for these HUC8 

sub‐basins was computed as follows: 

1)  𝑊𝐵𝐸𝑇 = 𝑃 − 𝑅 −  ∆𝑆   , 210 

where P, R, and ∆S are water-year precipitation, runoff, and storage changes at HUC8 subbasins, respectively. 

 The independent WBET dataset we used to compare against the MOD16 ET estimates, was generated via a water 

balance approach at the HUC8 scale. The conterminous United States is partitioned into hierarchical hydrologic units, each 

assigned a unique hydrologic unit code (HUC) consisting of two to eight digits (Seaber et al., 1987). The largest unit is a region 

(HUC2), followed by a sub-region (HUC4), a basin (HUC6), and ultimately a subbasin (HUC8). 215 

 Following established methods in the literature, we applied several filters to exclude HUC8 subbasins where the water 

balance was unlikely to close (i.e., WBET ≠ P – R). First, we removed any HUC8s having a runoff-to-precipitation ratio (R/P) 
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exceeding 0.40, to mitigate the influence of regional groundwater flow (Velpuri et al., 2013; Senay et al., 2016). We also 

excluded HUC8s having a WBET greater than PET and those having less than 60% of their area located within the Post Oak 

Savannah. These criteria resulted in 11 HUC8s being retained (Fig. 3). Among them, the percentage of area within the Post 220 

Oak Savannah ranged from 61 to 99%, with an average of 76%. In total, 154 pairwise comparisons (11 HUC8s × 14 water 

years) were available, because WaterWatch data extended only to the 2022 water year. 

 All 154 paired points were plotted and the R2, Bias, and RMSE were calculated. Furthermore, R2, Bias, and RMSE 

were calculated for each HUC8, as well as each water year. 

 225 

Figure 3. Map of the 11 retained HUC8 subbasins within the Post Oak Savannah, color-coded by subbasin ID. The table lists the percentage 

of each subbasin area contained within the ecoregion. 

2.3.2 Monthly and Seasonal Analysis 

Monthly MOD16 ET was averaged across the entire study period (2008–2023) to obtain monthly mean values. These monthly 

means were then extracted for each cover class and precipitation zone. Finally, the 12 monthly means for each class and zone 230 

were summed to calculate annual averages and standard deviations. 
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2.3.3 Point Data Extraction and regression Analysis 

The 500-m water‐year products, spanning 15 water years, were compiled for each variable, with ET designated as the response 

variable and Precipitation, Temperature, Canopy Cover, and Canopy Height serving as predictors. Next, a random stratified 

sampling approach was implemented to extract 1,000 points per precipitation zone, yielding a total of 4,000 points containing 235 

ET, Precipitation, Temperature, Canopy Cover, and Canopy Height for each water year. Points with missing values for any 

product in any water year were excluded from further analysis, resulting in 3,550 points for the regression models. 

 Each predictor was then paired with its corresponding ET value from the same water year (e.g., 2009 Canopy Cover 

with 2009 ET) and plotted. Simple linear regressions were conducted to generate lines of best fit and determine R² for each 

predictor–response pair, within each precipitation zone. This approach facilitated an examination of how the relationships 240 

between these variables vary under different levels of long-term aridity. 

2.3.4 ET/P and Excess Water Analysis 

Over the entire study period, total ET and P values were aggregated across the Post Oak Savannah. The ratio of ET to P (ET/P) 

was then computed to facilitate further analysis of the fraction of precipitation lost to the atmosphere. Next, the total ET was 

subtracted from the total P to quantify the volume of excess water retained in the terrestrial system. Finally, these excess water 245 

values were averaged within each cover class and precipitation zone. 

3 Results 

3.1 MOD16 ET Validation 

Comparisons of the MOD16 product with WBET estimates yielded an R2 of 0.65, a bias of -7 mm wyr−1 (−0.8%), and an 

RMSE of 103 mm wyr−1 (11.6%) (Fig. 4). Among individual HUC8s, R2 ranged from 0.11 to 0.70, bias spanned −79 to 250 

85 mm wyr−1, and RMSE varied between 63 and 104 mm wyr−1. Examined by water year, R2 ranged from 0.04 to 0.80, bias 

extended from −125 to 117 mm wyr−1, and RMSE ranged from 57 to 127 mm wyr−1 (Fig 4). 
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Figure 4. Comparison of Water‐Balance Evapotranspiration (WBET) and MOD16 ET at the HUC8 subbasin and annual scales (2009–

2022). (A) Scatterplot of WBET (x‐axis) versus MODIS‐estimated ET (y‐axis); the solid black line represents the 1:1 line and the red line 255 
is the linear regression fit. The inset box summarizes sample size (N), coefficient of determination (R²), bias (mm wyr⁻¹ and %), and root 

mean square error (RMSE in mm wyr⁻¹ and %). (B) Tables showing R², bias, and RMSE for each HUC8 sub‐basin (top) and each water year 

(bottom) 

3.2 Monthly and Seasonal Analysis 

Monthly ET increases from January to June, peaking at 133.6 mm (averaged across all canopy classes), before dropping to 260 

32.2 mm in December (Fig. 5). The highest single ET value, 168.0 mm, occurs in June within the ≥81% canopy cover class, 

while the lowest single value, 30.5 mm, is observed in December within the 0%–10% cover class. The ≥81% cover class 

exhibits the highest ET values for six months (April–September), whereas the 61%–80% cover class dominates in the 

remaining months (Fig. 5). 
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 265 

Figure 5. Monthly average ET by canopy‐cover class (and corresponding precipitation (2008–2023).  

ET exhibited a seasonal cycle, with average lows of 38.5 mm in winter (December–February), moderate levels of 98.7 mm in 

spring (March–May), and peak levels of 112.1 mm in summer (June–August), before declining to 61.0 mm in fall (September–

November) (Fig. 6). Notably, the drought year 2011 showed substantially lower ET values relative to other years—averaging 

78.7 mm in spring, 42.6 mm in summer, and 36.1 mm in fall—coinciding with the low precipitation totals. Conversely, higher 270 

precipitation levels led to greater distinction between seasonal ET averages (Fig. 6). 

https://doi.org/10.5194/egusphere-2025-1594
Preprint. Discussion started: 24 April 2025
c© Author(s) 2025. CC BY 4.0 License.



13 

 

 

Figure 6. Time‐series of monthly ET and precipitation from 2008 to 2023. The top panel shows monthly ET (black line) alongside seasonal 

average lines. The bottom panel displays monthly precipitation (black bars), the two horizontal lines indicating overall average monthly ET 

for 2010–2014 and 2015–2021. 275 

3.3 Regression Analyses 

The two climatic variables P and T exhibited notably different relationships with ET. Precipitation showed a moderate positive 

correlation, with R² values ranging from 0.23 (1001–1200 mm) to 0.61 (600–800 mm) and slopes from 0.29 (1001–1200 mm) 

to 0.55 (≥1201 mm) (Fig. 7). By contrast, temperature demonstrated a weak negative relationship with ET, with R² values 

varying from 0.09 (801–1000 mm) to 0.27 (600–800 mm) and slopes between −82.02 (600–800 mm) and −45.72 (801–280 

1000 mm) (Fig. 7). 
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 In comparison, the two woody-vegetation metrics showed more consistent positive relationships with ET than the 

climatic variables. Canopy height exhibited a moderate positive correlation, with R² values between 0.48 (600–800 mm and 

≥1201 mm) and 0.54 (801–1000 mm), and slopes ranging from 35.05 (1001–1200 mm) to 38.66 (801–1000 mm) (Fig. 7). 

Similarly, canopy cover displayed a weaker but still positive association, with R² values ranging from 0.12 (600–800 mm) to 285 

0.20 (1001–1200 mm) and slopes between 3.61 (600–800 mm) and 4.32 (1001–1200 mm) (Fig. 7). 

 

Figure 7. Scatterplots illustrating the linear relationships between MODIS ET (y‐axis) and four predictors—precipitation, temperature, 

canopy cover and canopy height (x‐axes)—for different precipitation zones (600–800 mm, 801–1000 mm, 1001–1200 mm, ≥1201 mm). The 

four precipitation zones are represented by color-coded lines showing the best fit regression for each, and the corresponding slope, intercept, 290 
and R2 values are shown in the insets. Canopy height data were available only for 2019 and 2020. 

3.4 ET/P Ratios and Excess Water Analysis 

The ratio of ET to P (ET/P) remained relatively stable, ranging between 70% and 100% throughout the study period, with an 

overall mean of 90% (Fig. 8). Notable deviations occurred in 2011 and 2022, when ET/P exceeded 100%. Both years were 

characterized by above-average temperatures and below-average precipitation (Fig. 8). 295 
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Figure 8. (Top panel) Annual ET/P ratios derived from MODIS ET estimates, with the interquartile range (IQR) shown in gray and the 

overall mean ratio (90%) by the dashed red line. (Bottom panel) Corresponding water-year precipitation and temperature with dashed lines 

denoting average precipitation and temperature over the study period.  300 
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Areas exhibiting ET/P ratios above 100% in the Post Oak Savannah predominantly coincided with low-elevation, forested 

river basins and their tributaries (Fig. 9). Notable examples include the Sabine, Trinity, Navasota, Guadalupe, and San Antonio 

River basins, where forested riparian zones consistently displayed ET/P values exceeding 100% (Fig. 9). 

 

Figure 9. Spatial distribution of ET/P ratios and elevation across the Post Oak Savannah ecoregion. Areas with ET/P > 100% are highlighted 305 
in red, while grayscale shading indicates elevation. Insets show detailed views of selected river basins, illustrating the prevalence of high 

ET/P in forested, low-elevation regions (NASA, SRTM). 

Total excess water varied substantially across the Post Oak Savannah ecoregion, with most values ranging from −5000 mm m-

² to 7500 mm/m² (Fig. 10A). Over the entire study period (2009–2023), the mean excess water was 2422 mm m-², or 161 mm 

m-² per year (Fig. 10B). Temporally, excess water ranged from a low of −22,394,455 mm in 2022 to a high of 167,853,812 mm 310 
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in 2016 (Fig. 10C). On average, the ecoregion totalled 47,971,635 mm of excess water per year. Only two years exhibited 

negative excess water: 2011 (−21,968,413 mm) and 2022 (−22,394,455 mm) (Fig. 10C). 

 These contrasting totals reflect different hydrometeorological conditions. In 2011, precipitation was relatively low at 

137 953 517 mm, whereas in 2022 it reached 221,613,882 mm (Fig. 10C). Conversely, evapotranspiration (ET) in 2011 was 

also low, returning only 158,624,385 mm of water to the atmosphere compared with 242,295,663 mm in 2022 (Fig. 10C). 315 

 

Figure 10. (A) Spatial distribution of total excess water (mm/m2) across the Post Oak Savannah ecoregion from 2009 to 2023. The amounts 

range from −5000 mm/m2 to 7500 mm/m2. (B) Frequency distribution of total excess water across the ecoregion, with red and blue dashed 

lines indicating 0 total excess water and the mean, respectively. (C) Annual summary of ET, P, and resulting excess water (mm). Negative 

values in the table (highlighted) indicate water years having net water deficits. 320 

When integrating both woody vegetation cover and overall aridity into the analysis, increases in woody cover consistently 

reduced excess water totals across every precipitation zone (Fig. 11). The highest annual excess water (414.87 mm m-²) occurs 

in areas with 0–10% woody cover that receive ≥1200 mm of precipitation (Fig. 11). In contrast, the lowest annual excess water 

(−122.87 mm m-²) occurs in areas with ≥80% woody cover in the 600–800 mm precipitation zone (Fig. 11). Notably, none of 

the 0–10%, 11–20%, 21–40%, or 41–60% woody cover classes exhibited negative excess water values (Fig. 11). Conversely, 325 

in the 61–80% and ≥80% woody cover categories, all precipitation zones had negative values except the ≥1200 mm zone, 

which remained positive (Fig. 11). 
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Figure 11. Mean annual excess water (mm/m²) as a function of woody cover (%) and precipitation zone. The black trend line indicates the 

overall decrease in excess water with rising woody cover. Positive values represent net surpluses, whereas negative values denote net deficits.  330 

4 Discussion 

4.1 MOD16 Accuracy 

The MOD16 ET model used in this study showed moderate-to-strong agreement with WBET measurements at the HUC8 

scale, with an overall RMSE of 103 mm w⁻¹yr and an R² of 0.65 (Figure 4-4). The bias of −7 mm w⁻¹yr indicates that the model 

generally neither overestimates nor underestimates ET. These findings align with other validations of the MOD16 ET product, 335 

performing better in some cases and worse in others (Aguilar et al., 2018; Nadzri & Hashim, 2014; Du & Song, 2018; Ruhoff 

et al., 2013; Miranda et al., 2017). 

 Miranda et al. (2017) reported higher accuracy (RMSE = 4.91 mm/month, R2 = 0.82) in Brazil’s Caatinga region, 

where annual temperature (±20 °C) and precipitation (300–1500 mm) are similar to those of the Post Oak Savannah. That 

monthly RMSE corresponds to an annual total of approximately 59 mm, outperforming the results of our study. Conversely, 340 

Ruhoff et al. (2013) observed that MOD16 overestimated ET by 19% compared with eddy covariance measurements in a 

Brazilian savannah, whereas our results indicate a slight tendency toward underestimation. Their R² (0.78) exceeded ours, but 

their RMSE (167.9 mm) was larger. 
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 Comparisons with a semiarid region in Northwest Mexico that closely resembles the Post Oak Savannah in both 

climate and species composition produced R² values ranging from 0.46 to 0.86, RMSE values from 142 to 168 mm, and biases 345 

from −66 to −15 mm annually (Aguilar et al., 2018). These ranges are similar to our own and thus bolster the credibility of our 

findings. 

 Interestingly, the subhumid northeastern HUC8s (HUC8s 1–4) exhibited the least accurate results (R² = 0.11–0.39, 

RMSE = 92–104 mm), whereas those for semiarid central and southwestern HUC8s (HUC8s 7–11) were more accurate 

(R² = 0.54–0.70, RMSE = 63–79 mm) (Figure 4-4). This outcome contrasts with the common pattern in MOD16 validation 350 

studies, in which wetter climates or seasons typically yield better performance (Du & Song, 2018; Velpuri et al., 2013). 

 Overall, MOD16 showed variable results by tending to normalize extremes. For extremely dry years (i.e., 2011 and 

2022), the model overestimated ET by 77 mm and 117 mm, respectively, suggesting inadequate constraints on ET under 

conditions of low soil moisture or reduced stomatal conductance (Figure 4-4). In contrast, in wetter years (e.g., 2015 and 2016), 

biases were lower (−62 mm and −80 mm, respectively), implying that increased cloud cover or unusual local conditions may 355 

produce higher levels of ET than MOD16 accounts for (Figure 4-4). 

 Finally, 2009 was an outlier in terms of accuracy, likely influenced by drought followed by the effects of Hurricane 

Ike, which made landfall on September 12, 2008, and impacted parts of the southern and eastern Post Oak Savannah. Rapid 

vegetation changes, reflected in LAI and FPAR inputs, along with waterlogged soils, may have violated the model’s 

assumptions, leading to a miscalculation of the partitioning between evaporation and transpiration. 360 

4.2 Monthly and Seasonal Trends 

We observed peak precipitation in May and October, which aligns with the expected wet (spring and fall) and dry (summer) 

seasons characteristic of a humid subtropical climate (Figure 4-5). Correspondingly, each canopy cover class showed its 

highest ET rates in June (Figure 4-5). This peak likely results from a combination of actively growing vegetation, abundant 

soil moisture following increased May rainfall, and warm temperatures that raise the vapor pressure deficit (VPD) and therefore 365 

the atmosphere’s capacity to hold water vapor (Liu et al., 2017; Sun et al., 2023). In addition, because our study area lies in the 

northern hemisphere, the summer solstice occurs in June, providing heightening solar radiation, which further increases PET 

(Aschonitis et al., 2017). 

 Despite July and August being the warmest months, ET declines substantially during this period (Figure 4-5). We 

attribute this decrease to reduced soil moisture storage, which is rapidly depleted via high-VPD-induced transpiration and 370 

evaporation (Mondal et al., 2024; Yang et al., 2023; Anav et al., 2018). This trend persists into the cooler months, when 

temperatures begin to drop and rainfall increases, so that ET only begins to rise again only in February as temperatures rebound. 

 Interestingly, the ≥81 % canopy cover class does not exhibit the highest ET in every month, but only from April to 

September (Figure 4-5). One explanation is that heavily “thicketized” (≥81%) woodlands may have a more complex vertical 

structure— comprising both deciduous and evergreen species—such that the overlapping foliage layers produce a more closed 375 

canopy during the warmer months (Whitehurst et al., 2013; Arumäe & Mait, 2018; Scott et al., 2015; Jucker et al., 2015). Many 

https://doi.org/10.5194/egusphere-2025-1594
Preprint. Discussion started: 24 April 2025
c© Author(s) 2025. CC BY 4.0 License.



20 

 

thicketized Post Oak Savannah stands consist of oak overstory combined with an understory of evergreen species such as 

Juniperus virginiana and Ilex vomitoria (Olariu et al., 2024; Basant et al., 2023). In contrast, woodlands with 61%–80 % 

canopy cover are generally dominated by evergreen species (Pourrahmati et al., 2023; Arumäe & Mait, 2018; Stephens 

et al., 2015), which remain active during cooler months—potentially explaining their higher ET from October through March. 380 

For instance, extensive Pinus taeda stands are found in the eastern Post Oak Savannah, adjacent to the Piney Woods ecoregion. 

Owing to their needle-shaped leaves, Pinus taeda woodlands typically range from 60 % to 80 % canopy cover, the higher 

percentages associated with mid-aged stands that include a mix of younger and older trees, eventually forming gaps in older 

stands (Song et al., 2009; Zeide & Stephens, 2010; Johnson et al., 2021). 

 Seasonal ET trends closely followed seasonal precipitation (Figure 4-6). From 2011 to 2014, monthly precipitation 385 

averaged 60 mm, resulting in minimal seasonal variation in ET. Between 2015 and 2021, however, monthly precipitation rose 

to an average of 86 mm—a 26 mm increase—which widened the seasonal stratification in ET. This increased stratification is 

attributable to higher transpiration rates during spring and summer, driven by the ample water supply that maintained elevated 

soil moisture (Fu et al., 2022; Koehler et al., 2023).  

 Notably, the severe drought of 2011 (Nielsen-Gammon, 2012; Chen et al., 2021) caused summer and fall ET to drop 390 

to winter-like levels (Figure 4-6). Although spring ET remained near average, this was likely a residual effect of the relatively 

wet conditions in 2009 and the average precipitation in 2010. The 2011 drought caused an estimated mortality of 

65.6 (±7.3) million trees in East Texas alone—encompassing common Post Oak Savannah species such as Quercus stellata, 

Quercus falcata, Ulmus alata, and Pinus taeda (Klockow et al., 2018). Additionally, the difference between precipitation and 

PET in 2011 reached −1206-mm (Schwantes et al., 2017). Widespread wildfires consumed nearly four million acres across 395 

Texas—31,453 individual fires—representing 47.3 % of all acreage burned by wildfire in the United States that year (Nielsen-

Gammon, 2012; Texas A&M Forest Service, 2011). 

4.3 Bioclimatic–ET Coupling  

Evapotranspiration in the Post Oak Savannah showed a moderate positive relationship with precipitation and a weak negative 

relationship with temperature (Figure 4-7). This P-ET coupling is consistent with global research findings, which highlights 400 

the tight linkage between these two fluxes across diverse ecosystems (Mondal & Mishra, 2024; Mondal et al., 2024; Xi 

et al., 2023; Zeng et al., 2010). Notably, the correlation was stronger in the more arid regions of the Post Oak Savannah (600–

1000 mm vs. ≥1001 mm), where limited water availability acts as the primary constraint instead of energy inputs (e.g., radiation 

and temperature) (Nagler et al., 2007; Yu et al., 2021). Consequently, in these drier areas, ET begins soon after precipitation 

events: soils rapidly absorb incoming rainfall, vegetation responds by increasing transpiration, and overall ET rises (Nielsen 405 

et al., 2024). 

 In contrast, the negative relationship between ET and temperature may appear counterintuitive. However, many plants 

operate within an optimal temperature window for photosynthesis and transpiration (commonly 20°C –30°C) (Yamasaki 

et al., 2002; McGowan et al., 2020; Crous et al., 2022). In the Post Oak Savannah, severe summer heat and lower precipitation 
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often drive plants to close their stomata, thereby reducing transpiration despite high VPD. This negative relationship is 410 

particularly strong in the most arid (600–800 mm) and most humid (≥1200 mm) areas, whereas it is weaker in the intermediate 

(801–1200 mm) zone. In the arid region, limited soil moisture readily explains stomatal closure and reduced transpiration. In 

more humid areas, factors such as persistent cloud cover or higher relative humidity may restrict the vertical movement of 

water vapor from plant surfaces to the atmosphere (Wang et al., 2023; Dai et al., 1999). 

 Both canopy cover and canopy height exhibited positive relationships with ET, yet canopy height correlated more 415 

strongly (Figure 4-7). Height provides a more integrative measure of forest water use by reflecting total aboveground biomass, 

leaf area index (LAI), and vertical leaf stratification—all of which strongly influence transpiration and hence total ET 

(Bonan, 2008; Baldocchi, 2003). These relationships remained relatively stable across all precipitation zones. Taller trees 

typically develop deeper, more extensive root systems that enable access to subsurface water reservoirs, a vital adaptation 

during the droughts often experienced in arid parts of the Post Oak Savannah. Consequently, such trees maintain transpiration 420 

and growth even when upper soil layers are dry. For example, Horton and Hart (1998) describe hydraulic lift, whereby deep-

rooted trees transfer water from moist lower soil layers to drier surface layers, thereby enhancing moisture availability for 

transpiration. Furthermore, Jackson et al. (2000) review the hydraulic architecture of trees and emphasize that taller individuals 

often possess complex, far-reaching root systems. These systems improve the capacity to extract and transport water from 

deeper sources, thus supporting a dense canopy and elevated transpiration rates. 425 

4.4 ET/P and Excess Water 

Over the study period, the average ET/P ratio in the Post Oak Savannah was 90% (Figure 4-8). Globally, the mean ET/P ratio 

over land surfaces is approximately 65%, varying by continent. For instance, North America averages around 70%, whereas 

Australia—which more closely resembles the Post Oak Savannah’s overall conditions—exhibits a higher ratio of 87% (Reitz 

et al., 2017; McDonald, 1961). An ET/P ratio of 90% is therefore plausible when compared with other semiarid or arid regions, 430 

where studies have reported ratios between 80% and 93% (Fleischmann et al., 2023; Irmak, 2017). Moreover, Althoff and 

Destouni (2023) suggest that ET/P will continue to rise as agricultural and forestry activities expand, increasing the prevalence 

of trees—a pattern already observed in the Post Oak Savannah (Olariu et al., 2024). This high ratio also indicates an ET-driven 

system, with evapotranspiration as the dominant water-budget component (Condon et al., 2020; Reitz et al., 2017), confirming 

the assumption made by Basant et al. (2023). 435 

 The ET/P ratios above 100% observed in 2011 and 2022 likely resulted from severe drought conditions, forcing the 

ecosystem to rely on minimal soil moisture reserves and possibly groundwater in riparian areas. Fleischmann et al. (2023) 

reported similar findings in South American riparian zones, consistent with our Post Oak Savannah observations (Figure 4-9). 

 Excess water (P−ET) exhibited substantial spatial variability, ranging from −5000 mm m⁻² to over 7500 mm m⁻², with 

an average of ~2500 mm m⁻² across the entire study period (Figure 4-10). However, 2011 and 2022 both showed net negative 440 

excess water, explained by the same conditions that led to ET/P ratios exceeding 100%. 
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Of note, Figure 4-11 illustrates a steep decline in excess water with increasing woody cover. As tree and shrub cover expands, 

transpiration intensifies, lowering the net water surplus. These findings align with those of Basant et al. (2023), who found that 

understory shrub thicketization in the Post Oak Savannah substantially reduces groundwater recharge. Consequently, under 

continued WPE, the Post Oak Savannah will likely experience greater reductions in excess water—especially in its more arid 445 

regions, where soil moisture is already limited. Such changes may alter local water availability, affect aquifer recharge, and 

shift ecosystem functioning, as woody plants increasingly outcompete herbaceous vegetation for scarce moisture. 

5 Conclusion 

This study demonstrates that ET in the Post Oak Savannah is intricately linked to both climatic drivers and vegetation structure. 

Our analysis revealed a moderate positive relationship between precipitation and ET, confirming that water availability is a 450 

primary driver in this region. Conversely, temperature exhibited a weak negative relationship with ET—a finding that, while 

initially counterintuitive, can be explained by plant physiological responses such as stomatal closure during periods of extreme 

heat. In the context of global warming, rising temperatures coupled with increasingly sporadic precipitation are likely to 

exacerbate these dynamics. Higher temperatures not only elevate the atmospheric demand for water but also promote rapid 

soil moisture depletion, leading to more pronounced instances of water stress. This decoupling of energy and water fluxes 455 

ultimately underlines the importance of understanding the nuanced interplay between climate and hydrology in sustaining 

regional water resources. 

 Quantifying how variations in canopy cover affect water use and, thereby, regional hydrological processes is vital for 

evaluating the impacts of WPE and thicketization affect sustainable water management. Our findings indicate that as woody 

cover increases, excess water decreases—especially in arid regions—owing to enhanced transpiration. This reduction in net 460 

water surplus has significant implications for groundwater recharge and ecosystem functioning, as increasing woody 

vegetation competes with herbaceous species for limited moisture. Consequently, these shifts in vegetation structure demand 

adaptive management strategies to preserve water availability under future climate scenarios. 

 While our study employs robust remote sensing and hydrological modeling techniques, several limitations must be 

acknowledged. First, the absence of eddy covariance towers precludes direct, in-situ validation of the MOD16 ET product. 465 

However, validation at the HUC8 scale via water-balance estimates remains acceptable for a large-scale analysis. Second, the 

coarser spatial resolution of MOD16 (500 m) may mask fine-scale hydrological processes, particularly in irrigated agricultural 

areas. Future research employing higher-resolution ET datasets could improve the accuracy of these assessments. Lastly, 

although the 15-year study period captures critical periods of drought and high rainfall, even longer-term observations would 

further enhance our understanding of how continued global warming influences the interplay between temperature, 470 

precipitation, and ET. 

 Overall, these results provide a critical foundation for understanding how climatic changes and woody vegetation 

dynamics jointly shape regional water cycles. By quantifying the effects of canopy cover on ET and excess water across 
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different precipitation zones, this study informs land managers and policymakers facing the challenges of sustaining water 

resources under ongoing global warming and WPE—not only in the Post Oak Savannah but in similar ecosystems worldwide. 475 

6 Code availability 

Woody Coverage code: https://code.earthengine.google.com/08f4a2fdce7672cb261f48fc658850e2 

Sub-basin ET and P code: https://code.earthengine.google.com/c77b2aeb8fc4687677b33c1c141d16bc 

ET/P and Excess water analysis code: https://code.earthengine.google.com/80ef181f4002d7314a10ae391800189d 

Water Year aggregation code: https://code.earthengine.google.com/8b4ee77f99b3e067bae38c8386e150ff 480 

Pointwise Sampling code: https://code.earthengine.google.com/1957d01209128479a368e655b5b75064 

Monthly MODIS ET code: https://code.earthengine.google.com/2c21005c469551d5646b1ee86812cfe9 

Monthly P and T code: https://code.earthengine.google.com/23bc61414ed99bb58892ea682a965b5e 

7 Data availability 

MODIS ET product: https://lpdaac.usgs.gov/products/mod16a2gfv061/ 485 

Daymet V4 Temperature product: https://daac.ornl.gov/cgi-bin/dataset_lister.pl?p=32 

Canopy Cover product: https://rangelands.app/rap/?biomass_t=herbaceous&ll=36.5526,-101.3460&z=4&landcover_t=tre 
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Runoff products: https://waterwatch.usgs.gov/index.php?id=romap3&sid=w__download 490 
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